High-throughput protease activity cytometry reveals dose-dependent heterogeneity in PMA-mediated ADAM17 activation.

نویسندگان

  • Lidan Wu
  • Allison M Claas
  • Aniruddh Sarkar
  • Douglas A Lauffenburger
  • Jongyoon Han
چکیده

As key components of autocrine signaling, pericellular proteases, a disintegrin and metalloproteinases (ADAMs) in particular, are known to impact the microenvironment of individual cells and have significant implications in various pathological situations including cancer, inflammatory and vascular diseases. There is great incentive to develop a high-throughput platform for single-cell measurement of pericellular protease activity, as it is essential for studying the heterogeneity of protease response and the corresponding cell behavioral consequences. In this work, we developed a microfluidic platform to simultaneously monitor protease activity of many single cells in a time-dependent manner. This platform isolates individual microwells rapidly on demand and thus allows single-cell activity measurement of both cell-surface and secreted proteases by confining individual cells with diffusive FRET-based substrates. With this platform, we observed dose-dependent heterogeneous protease activation of HepG2 cells treated with phorbol 12-myristate 13-acetate (PMA). To study the temporal behavior of PMA-induced protease response, we monitored the pericellular protease activity of the same single cells during three different time periods and revealed the diversity in the dynamic patterns of single-cell protease activity profile upon PMA stimulation. The unique temporal information of single-cell protease response can help unveil the complicated functional role of pericellular proteases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of ADAM17 activity by regulation of its cellular localisation

An important, irreversible step in many signalling pathways is the shedding of membrane-anchored proteins. A Disintegrin And Metalloproteinase (ADAM) 17 is one of the major sheddases involved in a variety of physiological and pathophysiological processes including regeneration, differentiation, and cancer progression. This central role in signalling implies that ADAM17 activity has to be tightl...

متن کامل

PKCα and PKCδ Regulate ADAM17-Mediated Ectodomain Shedding of Heparin Binding-EGF through Separate Pathways

Epidermal growth factor receptor (EGFR) signalling is initiated by the release of EGFR-ligands from membrane-anchored precursors, a process termed ectodomain shedding. This proteolytic event, mainly executed by A Disintegrin And Metalloproteases (ADAMs), is regulated by a number of signal transduction pathways, most notably those involving protein kinase C (PKC). However, the molecular mechanis...

متن کامل

Resveratrol inhibits tumor cell adhesion to endothelial cells by blocking ICAM-1 expression.

Resveratrol, a grape polyphenol, is thought to have anti-inflammatory, cardioprotective, and cancer preventive properties. However, the mechanisms by which resveratrol might produce these effects are not clearly defined. A study was performed on whether resveratrol could prevent tumor cells from adhering to endothelial cells, which is an essential step during tumor metastasis. Phorbol 12-myrist...

متن کامل

A disintegrin and metalloprotease 17 promotes microglial cell survival via epidermal growth factor receptor signalling following spinal cord injury

Tumour necrosis factor-α (TNF-α) converting enzyme (TACE), also termed a disintegrin and metalloprotease 17 (ADAM17), is involved in multiple cell signalling pathways. Through the secretion of epidermal growth factor receptor (EGFR) ligands, ADAM17 can activate the EGFR and is involved in various downstream signalling pathways. The present study aimed to investigate whether ADAM17‑induced EGFR ...

متن کامل

Liver protective effect of ursodeoxycholic acid includes regulation of ADAM17 activity

BACKGROUND Ursodeoxycholic acid (UDCA) is used to treat primary biliary cirrhosis, intrahepatic cholestasis, and other cholestatic conditions. Although much has been learned about the molecular basis of the disease pathophysiology, our understanding of the effects of UDCA remains unclear. Possibly underlying its cytoprotective, anti-apoptotic, anti-oxidative effects, UDCA was reported to regula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Integrative biology : quantitative biosciences from nano to macro

دوره 7 5  شماره 

صفحات  -

تاریخ انتشار 2015